Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Biochimie ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640996

RESUMO

Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5mC) site methylation patterns using Illumina Infinium 850K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lcSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.

2.
Forensic Sci Res ; 9(1): owad050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562552

RESUMO

The identification of historical military remains by Unrecovered War Casualties-Army (UWC-A) currently relies on Y-chromosome Short Tandem Repeat (Y-STR) testing when maternal relatives are not available, or when a mitochondrial DNA match does not provide sufficient certainty of identification. However, common Y-STR profiles (using Yfiler™) between sets of remains or families often prevent identification. To resolve these cases, an investigation of additional Y-DNA markers is needed for their potential inclusion into the DNA identification strategy. The number of genetic transmissions between missing soldiers and their living relatives needs to be considered to avoid false exclusions between paternal relatives. Analysis of 236 World War I/II (WWI/II) era pairs of relatives identified up to seven genetic transmissions between WWII soldiers and their living relatives, and nine for WWI. Previous Y-STR meta-analyses were published approximately 10 years ago when rapidly mutating markers were relatively new. This paper reports a contemporary literature review and meta-analysis of 35 studies (which includes 23 studies not previously used in meta-analysis) and 23 commonly used Y-STR's mutation rates to inform the inclusion of additional loci to UWC-A's DNA identification strategy. Meta-analysis found mutation data for a given Y-STR locus could be pooled between studies and that the mutation rates were significantly different between some loci (at P < 0.05). Based on this meta-analysis, we have identified two additional markers from PowerPlex® Y23 for potential inclusion in UWC-A's identification strategy. Further avenues for potential experimental exploration are discussed. Key points: From 236 UWC-A pairs of relatives, we observed up to nine genetic transmissions between WWI soldiers and their living relatives, and seven for WWII.MedCalc® software for meta-analysis utilizing the Freeman-Tukey transformation was run, which analysed 35 published studies and 23 commonly used loci. Previous Y-STR mutation rate meta-analyses are now 10 years old; this paper includes 23 studies that were not included in previous meta-analyses.Through meta-analysis, we identify two markers from PowerPlex® Y23 for potential inclusion in UWC-A's historical remains identification strategy (alongside Yfiler™). We discuss potential next steps for experimental exploration of additional Y-DNA markers.

3.
Cell Mol Neurobiol ; 44(1): 30, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546765

RESUMO

Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aß) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Humanos , Proteoglicanas de Heparan Sulfato , Peptídeos beta-Amiloides , Lesões Encefálicas Traumáticas/terapia , Neurogênese
4.
Sci Rep ; 14(1): 3411, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341456

RESUMO

Cancer pain is the most feared symptom at end of life. Methadone has advantages over other opioids but is associated with significant variability in clinical response, making dosing challenging in practice. OPRM1 is the most studied pharmacogene associated with the pharmacodynamics of opioids, however reports on the association of the A118G polymorphism on opioid dose requirements are conflicting, with no reports including methadone as the primary intervention. This association study on OPRM1 A118G and response to methadone for pain management, includes a review of this genetic factor's role in inter-patient variability. Fifty-four adult patients with advanced cancer were recruited in a prospective, multi-centre, open label dose individualization study. Patient characteristics were not shown to influence methadone response, and no significant associations were observed for methadone dose or pain score. The findings of our review of association studies for OPRM1 A118G in advanced cancer pain demonstrate the importance of taking ancestry into account. While our sample size was small, our results were consistent with European populations, but in contrast to studies in Chinese patients, where carriers of the A118G polymorphism were associated with higher opioid dose requirements. Pharmacogenetic studies in palliative care are challenging, continued contribution will support future genotype-based drug dosing guidelines.


Assuntos
Dor do Câncer , Neoplasias , Adulto , Humanos , Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Genótipo , Metadona/uso terapêutico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Manejo da Dor , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Receptores Opioides mu/genética
5.
Aging Cell ; 23(1): e13859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37128843

RESUMO

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.


Assuntos
Epigenoma , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Perfilação da Expressão Gênica
6.
Clin Epigenetics ; 15(1): 190, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087366

RESUMO

BACKGROUND: Chronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and prevention strategies. An important factor in the chronification of migraine is the overuse of acute headache medication. However, the mechanisms behind the transformation of episodic migraine to chronic migraine and vice versa have not yet been elucidated. We performed a longitudinal epigenome-wide association study to identify DNA methylation (DNAm) changes associated with treatment response in patients with chronic migraine and medication overuse as part of the Chronification and Reversibility of Migraine clinical trial. Blood was taken from patients with chronic migraine (n = 98) at baseline and after a 12-week medication withdrawal period. Treatment responders, patients with ≥ 50% reduction in monthly headache days (MHD), were compared with non-responders to identify DNAm changes associated with treatment response. Similarly, patients with ≥ 50% versus < 50% reduction in monthly migraine days (MMD) were compared. RESULTS: At the epigenome-wide significant level (p < 9.42 × 10-8), a longitudinal reduction in DNAm at an intronic CpG site (cg14377273) within the HDAC4 gene was associated with MHD response following the withdrawal of acute medication. HDAC4 is highly expressed in the brain, plays a major role in synaptic plasticity, and modulates the expression and release of several neuroinflammation markers which have been implicated in migraine pathophysiology. Investigating whether baseline DNAm associated with treatment response, we identified lower baseline DNAm at a CpG site (cg15205829) within MARK3 that was significantly associated with MMD response at 12 weeks. CONCLUSIONS: Our findings of a longitudinal reduction in HDAC4 DNAm status associated with treatment response and baseline MARK3 DNAm status as an early biomarker for treatment response, provide support for a role of pathways related to chromatin structure and synaptic plasticity in headache chronification and introduce HDAC4 and MARK3 as novel therapeutic targets.


Assuntos
Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Humanos , Estudos Longitudinais , Metilação de DNA , Transtornos da Cefaleia Secundários/tratamento farmacológico , Transtornos da Cefaleia Secundários/genética , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Cefaleia , Biomarcadores/metabolismo
7.
Curr Issues Mol Biol ; 45(10): 7862-7877, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37886940

RESUMO

DNA methylation is an epigenetic factor that is modifiable and can change over a lifespan. While many studies have identified methylation sites (CpGs) related to aging, the relationship of these to gene function and age-related disease phenotypes remains unclear. This research explores this question by testing for the conjoint association of age-related CpGs with gene expression and the relation of these to body fat phenotypes. The study included blood-based gene transcripts and intragenic CpG methylation data from Illumina 450 K arrays in 74 healthy adults from the Norfolk Island population. First, a series of regression analyses were performed to detect associations between gene transcript level and intragenic CpGs and their conjoint relationship with age. Second, we explored how these age-related expression CpGs (eCpGs) correlated with obesity-related phenotypes, including body fat percentage, body mass index, and waist-to-hip ratio. We identified 35 age-related eCpGs associated with age. Of these, ten eCpGs were associated with at least one body fat phenotype. Collagen Type XI Alpha 2 Chain (COL11A2), Complement C1s (C1s), and four and a half LIM domains 2 (FHL2) genes were among the most significant genes with multiple eCpGs associated with both age and multiple body fat phenotypes. The COL11A2 gene contributes to the correct assembly of the extracellular matrix in maintaining the healthy structural arrangement of various components, with the C1s gene part of complement systems functioning in inflammation. Moreover, FHL2 expression was upregulated under hypermethylation in both blood and adipose tissue with aging. These results suggest new targets for future studies and require further validation to confirm the specific function of these genes on body fat regulation.

8.
Biol Sex Differ ; 14(1): 56, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670389

RESUMO

BACKGROUND: Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS: We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS: Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS: We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.


Assuntos
Proteínas Musculares , Proteoma , Feminino , Masculino , Humanos , Músculo Esquelético , Exercício Físico , Metilação de DNA
9.
Hum Genet ; 142(9): 1361-1373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422595

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations in NOTCH3 and results in a phenotype characterised by recurrent strokes, vascular dementia and migraines. Whilst a genetic basis for the disease is known, the molecular mechanisms underpinning the pathology of CADASIL are still yet to be determined. Studies conducted at the Genomics Research Centre (GRC) have also identified that only 15-23% of individuals clinically suspected of CADASIL have mutations in NOTCH3. Based on this, whole exome sequencing was used to identify novel genetic variants for CADASIL-like cerebral small-vessel disease (CSVD). Analysis of functionally important variants in 50 individuals was investigated using overrepresentation tests in Gene ontology software to identify biological processes that are potentially affected in this group of patients. Further investigation of the genes in these processes was completed using the TRAPD software to identify if there is an increased number (burden) of mutations that are associated with CADASIL-like pathology. Results from this study identified that cell-cell adhesion genes were positively overrepresented in the PANTHER GO-slim database. TRAPD burden testing identified n = 15 genes that had a higher number of rare (MAF < 0.001) and predicted functionally relevant (SIFT < 0.05, PolyPhen > 0.8) mutations compared to the gnomAD v2.1.1 exome control dataset. Furthermore, these results identified ARVCF, GPR17, PTPRS, and CELSR1 as novel candidate genes in CADASIL-related pathology. This study identified a novel process that may be playing a role in the vascular damage related to CADASIL-related CSVD and implicated n = 15 genes in playing a role in the disease.


Assuntos
CADASIL , Humanos , CADASIL/genética , CADASIL/patologia , Adesão Celular , Mutação , Éxons , Fenótipo , Imageamento por Ressonância Magnética , Receptores Acoplados a Proteínas G/genética
10.
J Cancer Res Clin Oncol ; 149(10): 7405-7412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939926

RESUMO

PURPOSE: Chemotherapy induced peripheral neuropathy (CIPN) is a debilitating condition that is a direct consequence of receiving cancer treatment. The molecular aetiology of CIPN is not well understood, and it is theorised that there may be a genetic component. Genetic polymorphisms in Glutathione-S Transferase (GST) genes, including GSTT1, GSTM1 and GSTP1, encode for enzymes known to metabolise drugs used in chemotherapy, and have been theorised to be associated with CIPN. This study aimed to investigate four markers in these genes for an association in a mixed cancer cohort in relation to CIPN (n = 172). METHODS: CIPN was measured using the neuropathy item from the Patient Reported Outcome Common Terminology Criteria for Adverse Event (PRO-CTCAE) assessment. Genotyping for all samples was performed using PCR for the GSTM1 and GSTT1 null variants and restriction fragment length polymorphisms for the GSTP1 and GSTM1 polymorphisms. RESULTS: No associations were found for the GST gene markers in relation to CIPN within our study, or CIPN severity. Longitudinal stratification of the CIPN phenotypes to examine links for neuropathy, identified nominally significant protective associations with the GSTM* null allele (p-value = 0.038, OR = 0.55) and the presence of pain at month 2 of treatment, as well as a risk factor for pain related month 2 of treatment for individuals with the GSTT1*null allele (p-value = 0.030, OR = 1.64). Higher severity of pain in patients with CIPN persisted at each time-point compared to those without CIPN. CONCLUSION: No significant results for an association between CIPN with polymorphisms in GSTM1, GSTT1 and GSTP1 were identified. However, associations for the GSTM1¬-null and GSTT1-null polymorphisms with pain at month 2 following chemotherapy were identified.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Predisposição Genética para Doença , Estudos de Casos e Controles , Polimorfismo Genético , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética , Fatores de Risco , Dor/tratamento farmacológico , Dor/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Genótipo
11.
J Crit Care ; 76: 154286, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36965223

RESUMO

PURPOSE: We aimed to identify a gene signature that discriminates between sepsis and aseptic inflammation in patients administered antibiotics in the intensive care unit and compare it to commonly utilised sepsis biomarkers. METHODS: 91 patients commenced on antibiotics were retrospectively diagnosed as having: (i) blood culture positive sepsis; (ii) blood culture negative sepsis; or (iii) aseptic inflammation. Bloods were collected after <24 h of antibiotic commencement for both gene expression sequencing analysis and measurement of previously identified biomarkers. RESULTS: 53 differentially expressed genes were identified that accurately discriminated between blood culture positive sepsis and aseptic inflammation in a cohort of patients given antibiotics [aROC 0.97 (95% CI, 0.95-0.99)]. This gene signature was validated in a publicly available database. The gene signature outperformed previously identified sepsis biomarkers including C-reactive protein [aROC 0.72 (95% CI, 0.57-0.87)], NT-Pro B-type Natriuretic Peptide [aROC 0.84 (95% CI, 0.73-0.96)], and Septicyte™ LAB [aROC 0.8 (95% CI, 0.68-0.93)], but was comparable to Procalcitonin [aROC 0.96 (95% CI, 0.9-1)]. CONCLUSIONS: A gene expression signature was identified that accurately discriminates between sepsis and aseptic inflammation in patients given antibiotics in the intensive care unit.


Assuntos
Sepse , Transcriptoma , Humanos , Estudos Retrospectivos , Biomarcadores , Sepse/diagnóstico , Sepse/genética , Inflamação , Unidades de Terapia Intensiva , Antibacterianos/uso terapêutico
12.
Data Brief ; 46: 108880, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687151

RESUMO

To obtain this dataset, two human HER2-positive breast cancer cell lines (SKBR3 and MDA-MB-453 cell lines) were cultured in basal growth media to 80% confluence. Cells were passaged and total RNA extracted, RNA converted to cDNA and diluted to a working concentration of 40 ng/µL. Gene expression panels of cancer markers including Fibroblast growth factors (FGF), FGF receptors (FGFRs), cyclin-dependent kinases, cytokeratins, and WNT pathway components were then examined using Q-PCR. Gene expression was normalised against the expression of the endogenous gene 18S. This article describes the data used in the research article "Syndecan-4 regulates the HER2-positive breast cancer cell proliferation cells via CK19/AKT signaling" [1]. The data presented demonstrates the range of gene expression profiles of these cells and aims to provide more detail of all gene expression changes observed in these cell lines.

13.
Eur J Haematol ; 110(5): 457-469, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36656099

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic has dramatically impacted the health risk and management of patients with lymphoma. Clinical evaluations on the impact of COVID-19 on lymphoma patients are currently limited however, reports have shown a correlation with specific variants and more severe COVID-19 complications and higher mortality rates relative to other disease states and age-matched populations. During peak pandemic periods this created a concerning management problem for clinicians and raised the question of how different immunocompromised states increase COVID-19-associated risk and provided insights into how immunity interacts with the circulating variant, including the effects of low virulent variants in vaccinated lymphoma populations. Treatment management approaches, polymerase chain reaction tests and rapid antigen screening guidelines have been offered in an attempt to reduce the risk of harm to lymphoma patients, particularly prior to and following bone marrow or stem cell transplant. Here we systematically review the current literature to provide a novel global perspective on incidence, mortality, management and rapid antigen test (RAT) screening for COVID-19, in patients with various subtypes of lymphoma. Furthermore, lessons learned from emerging variants that continue to inform evolving lymphoma management and public health policies are addressed across these associated matters.


Assuntos
COVID-19 , Linfoma , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Linfoma/diagnóstico , Linfoma/epidemiologia , Linfoma/etiologia
14.
Methods Mol Biol ; 2630: 215-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689185

RESUMO

Contemporary computational target prediction tools with their distinctive properties and stringency have been playing a vital role in pursuing putative targets for a solitary miRNA or a subcategory of miRNAs. These tools utilize a defined set of probabilistic algorithms, machine learning techniques, and information of experimentally validated miRNA targets to provide the best selection. However, there are numerous false-positive predictions, and a method to choose an archetypal approach and put the data provided by the prediction tools into context is still lacking. Moreover, sensitivity, specificity, and overall efficiency of a single tool have not yet been achieved. Therefore, a systematic combination of selective online tools combining elementary and advanced factors of miRNA target identification might reinforce the current target prediction regime. The focus of this study was to build a comprehensive workflow by combining six available online tools to facilitate the current understanding of miRNA-target prediction.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Aprendizado de Máquina , Biologia Computacional/métodos
15.
J Cancer Res Clin Oncol ; 149(8): 4563-4578, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36152082

RESUMO

In Australia, 13% of women are diagnosed with breast cancer (BC) in their lifetime with approximately 20,000 women diagnosed with the disease in 2021. BC is characterised by complex histological and genomic influences with recent advances in cancer biology improving early diagnosis and personalised treatment interventions. The Phosphatidyl-inositol-3-kinase/Protein kinase B (PI3K/AKT) pathway is essential in apoptosis resistance, cell survival, activation of cellular responses to DNA damage and DNA repair. Heparan sulfate proteoglycans (HSPGs) are ubiquitous molecules found on the cell surface and in the extracellular matrix with essential functions in regulating cell survival, growth, adhesion and as mediators of cell differentiation and migration. HSPGs, particularly the syndecans (SDCs), have been linked to cancers, making them an exciting target for anticancer treatments. In the PI3K/AKT pathway, syndecan-4 (SDC4) has been shown to downregulate AKT Serine/Threonine Kinase (AKT1) gene expression, while the ATM Serine/Threonine Kinase (ATM) gene has been found to inhibit this pathway upstream of AKT. We investigated single-nucleotide polymorphisms (SNPs) in HSPG and related genes SDC4, AKT1 and ATM and their influence on the prevalence of BC. SNPs were genotyped in the Australian Caucasian Genomics Research Centre Breast Cancer (GRC-BC) population and in the Griffith University-Cancer Council Queensland Breast Cancer Biobank (GU-CCQ BB) population. We identified that SDC4-rs1981429 and ATM-rs228590 may influence the development and progression of BC, having the potential to become biomarkers in early BC diagnosis and personalised treatment.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Sindecana-4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Austrália , Proteoglicanas de Heparan Sulfato/metabolismo , Biomarcadores , Serina , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
16.
Adv Healthc Mater ; 12(14): e2202202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36527735

RESUMO

Breast cancer is a complex, highly heterogenous, and dynamic disease and the leading cause of cancer-related death in women worldwide. Evaluation of the heterogeneity of breast cancer and its various subtypes is crucial to identify novel treatment strategies that can overcome the limitations of currently available options. Explant cultures of human mammary tissue have been known to provide important insights for the study of breast cancer structure and phenotype as they include the context of the surrounding microenvironment, allowing for the comprehensive exploration of patient heterogeneity. However, the major limitation of currently available techniques remains the short-term viability of the tissue owing to loss of structural integrity. Here, an ex vivo culture model using star-shaped poly(ethylene glycol) and maleimide-functionalized heparin (PEG-HM) hydrogels to provide structural support to the explant cultures is presented. The mechanical support allows the culture of the human mammary tissue for up to 3 weeks and prevent disintegration of the cellular structures including the epithelium and surrounding stromal tissue. Further, maintenance of epithelial phenotype and hormonal receptors is observed for up to 2 weeks of culture which makes them relevant for testing therapeutic interventions. Through this study, the importance of donor-to-donor variability and intra-patient tissue heterogeneity is reiterated.


Assuntos
Neoplasias da Mama , Heparina , Humanos , Feminino , Heparina/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Neoplasias da Mama/tratamento farmacológico , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Materiais Biocompatíveis , Microambiente Tumoral
17.
Biochimie ; 207: 49-61, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36460206

RESUMO

Despite the use of the highly specific anti-HER2 receptor (trastuzumab) therapy, HER2-positive breast cancers account for 20-30% of all breast cancer carcinomas, with HER2 status a challenge to treatment interventions. The heparan sulfate proteoglycans (HSPGs) are prominently expressed in the extracellular matrix (ECM), mediate breast cancer proliferation, development, and metastasis with most studies to date conducted in animal models. This study examined HSPGs in HER2-positive human breast cancer cell lines and their contribution to cancer cell proliferation. The study examined the cells following enhancement (via the addition of heparin) and knockdown (KD; using short interfering RNA, siRNA) of HSPG core proteins. The interaction of HSPG core proteins and AKT signalling molecules was examined to identify any influence of this signalling pathway on cancer cell proliferation. Our findings illustrated the HSPG syndecan-4 (SDC4) core protein significantly regulates cell proliferation with increased BC cell proliferation following heparin addition to cultures and decreased cell number following SDC4 KD. In addition, along with SDC4, significant changes in CK19/AKT signalling were identified as mediators of BC HER2-positive BC cell proliferation. This study provides evidence for a cell growth regulatory axis involving HSPGs/CK19 and AKT that represents a potential molecular target to prevent proliferation of HER2-positive breast cancer cells.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/metabolismo , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sindecana-4 , Proliferação de Células , Linhagem Celular Tumoral , Heparina
18.
Genes (Basel) ; 15(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38254919

RESUMO

Neuropeptides are mostly expressed in regions of the brain responsible for learning and memory and are centrally involved in cognitive pathways. The majority of neuropeptide research has been performed in animal models; with acknowledged differences between species, more research into the role of neuropeptides in humans is necessary to understand their contribution to higher cognitive function. In this study, we investigated the influence of genetic polymorphisms in neuropeptide genes on verbal learning and memory. Variants in genes encoding neuropeptides and neuropeptide receptors were tested for association with learning and memory measures using the Hopkins Verbal Learning Test-Revised (HVLT-R) in a healthy cohort of individuals (n = 597). The HVLT-R is a widely used task for verbal learning and memory assessment and provides five sub-scores: recall, delay, learning, retention, and discrimination. To determine the effect of candidate variants on learning and memory performance, genetic association analyses were performed for each HVLT-R sub-score with over 1300 genetic variants from 124 neuropeptide and neuropeptide receptor genes, genotyped on Illumina OmniExpress BeadChip arrays. This targeted analysis revealed numerous suggestive associations between HVLT-R test scores and neuropeptide and neuropeptide receptor gene variants; candidates include the SCG5, IGFR1, GALR1, OXTR, CCK, and VIPR1 genes. Further characterization of these genes and their variants will improve our understanding of the genetic contribution to learning and memory and provide insight into the importance of the neuropeptide network in humans.


Assuntos
Neuropeptídeos , Aprendizagem Verbal , Animais , Humanos , Aprendizagem , Neuropeptídeos/genética , Polimorfismo Genético , Receptores de Neuropeptídeos/genética
19.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291125

RESUMO

An early symptom of Alzheimer's disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.


Assuntos
Doença de Alzheimer , Cognição , Expressão Gênica , Mucosa Olfatória , Células-Tronco , Humanos , Proteínas de Ancoragem à Quinase A/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Células Cultivadas
20.
Sci Rep ; 12(1): 17422, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261449

RESUMO

Opioids are the therapeutic agents of choice to manage moderate to severe pain in patients with advanced cancer, however the unpredictable inter-individual response to opioid therapy remains a challenge for clinicians. While studies are few, the KCNJ6 gene is a promising target for investigating genetic factors that contribute to pain and analgesia response. This is the first association study on polymorphisms in KCNJ6 and response to methadone for pain management in advanced cancer. Fifty-four adult patients with advanced cancer were recruited across two study sites in a prospective, open label, dose individualisation study. Significant associations have been previously shown for rs2070995 and opioid response in opioid substitution therapy for heroin addiction and studies in chronic pain, with mixed results seen in postoperative pain. In this study, no associations were shown for rs2070995 and methadone dose or pain score, consistent with other studies conducted in patients receiving opioids for pain in advanced cancer. There are many challenges in conducting studies in advanced cancer with significant attrition and small sample sizes, however it is hoped that the results of our study will contribute to the evidence base and allow for continued development of gene-drug dosing guidelines for clinicians.


Assuntos
Dor Crônica , Neoplasias , Adulto , Humanos , Metadona/uso terapêutico , Analgésicos Opioides/uso terapêutico , Manejo da Dor , Estudos Prospectivos , Dor Crônica/tratamento farmacológico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Morte , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...